Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Cell Mol Neurobiol ; 44(1): 46, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743119

RESUMEN

Central nervous system (CNS) disorders represent the leading cause of disability and the second leading cause of death worldwide, and impose a substantial economic burden on society. In recent years, emerging evidence has found that beta2 -microglobulin (B2M), a subunit of major histocompatibility complex class I (MHC-I) molecules, plays a crucial role in the development and progression in certain CNS diseases. On the one hand, intracellular B2M was abnormally upregulated in brain tumors and regulated tumor microenvironments and progression. On the other hand, soluble B2M was also elevated and involved in pathological stages in CNS diseases. Targeted B2M therapy has shown promising outcomes in specific CNS diseases. In this review, we provide a comprehensive summary and discussion of recent advances in understanding the pathological processes involving B2M in CNS diseases (e.g., Alzheimer's disease, aging, stroke, HIV-related dementia, glioma, and primary central nervous system lymphoma).


Asunto(s)
Enfermedades del Sistema Nervioso Central , Microglobulina beta-2 , Humanos , Microglobulina beta-2/metabolismo , Enfermedades del Sistema Nervioso Central/metabolismo , Enfermedades del Sistema Nervioso Central/patología , Animales
2.
Discov Oncol ; 14(1): 148, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37566174

RESUMEN

OBJECTIVE TERT: is the most frequently mutated gene in adult glioblastomas (GBMs) defined by the 2021 World Health Organization classification system. The present study aims to explore differences in clinical characteristics and immune microenvironment between TERT mutant and wild-type GBM. METHODS: Three GBM-related cohorts consisting of 205 GBM patients in our cohort, 463 GBM patients without immune checkpoint inhibitor(ICI) therapy and 1465 tumour patients (including 92 GBM cases) receiving ICI treatment in the MSK cohort were included. Retrospective analysis and immunohistochemistry assay were used for investigating the local (including tumour cells, local immune cells, and seizures) and systemic (including circulating immune cells, coagulation-related functions, and prognosis) effects of TERT mutations. Besides, differences in genetic alterations and immunotherapy responses between TERT mutant and wild-type GBMs were also explored. RESULTS: We found that TERT mutant and wild-type GBMs possessed similar initial clinic symptoms, circulating immune microenvironment and immunotherapy response. With respect to that in TERT wild-type GBMs, mutations in TERT resulted in higher levels of tumour-infiltrating neutrophils, prolonged coagulation time, worse chemotherapy response and poorer overall survival. CONCLUSION: Mutations in TERT alter the local immune environment and decrease the sensitivity of GBM to chemotherapy.

3.
Int Immunopharmacol ; 123: 110761, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37544025

RESUMEN

Astrocytes are crucially involved in neuroinflammation. Activated astrocytes exhibit at least two phenotypes, A1 (neurotoxic) and A2 (neuroprotective). The A1 phenotype is the major reactive astrocyte phenotype involved in aging and neurodegenerative diseases. Telmisartan, which is an antihypertensive agent, is a promising neuroprotective agent. This study aimed to investigate the effects of telmisartan on the phenotype of reactive astrocytes. Astrocytes were activated by culturing with the conditioned medium derived from lipopolysaccharide-stimulated microglia. This conditioned medium induced early, transient A2 astrocyte conversion (within 24 h) and late, sustained A1 conversion (beginning at 24 h and lasting up to 7 days), with a concomitant increase in the production of pro-inflammatory cytokines (interleukin [IL]-1ß, tumor necrosis factor [TNF]α, and IL-6) and phosphorylation of nuclear factor-κB (NF-κB)/p65. Telmisartan treatment promoted and inhibited A2 and A1 conversion, respectively. Telmisartan reduced total and phosphorylated p65 protein levels. Losartan, a specific angiotensin II type-1 receptor (AT1R) blocker, did not influence the reactive state of astrocytes. Additionally, AT1R activation by angiotensin II did not induce the expression of pro-inflammatory cytokines and A1/A2 markers, indicating that the AT1R signaling pathway is not involved in the astrocyte-mediated inflammatory response. A peroxisome proliferator-activated receptor γ (PPARγ) antagonist reversed the effects of telmisartan. Moreover, telmisartan-induced p65 downregulation was reversed by the proteasome inhibitor MG132. These results indicate that telmisartan suppresses activated microglia-induced neurotoxic A1 astrocyte conversion through p65 degradation. Our findings contribute towards the elucidation of the anti-inflammatory activity of telmisartan in brain disorders.


Asunto(s)
FN-kappa B , PPAR gamma , Telmisartán/farmacología , FN-kappa B/metabolismo , PPAR gamma/metabolismo , Astrocitos/metabolismo , Microglía , Angiotensina II/metabolismo , Medios de Cultivo Condicionados/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Citocinas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
4.
BMC Cancer ; 23(1): 420, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37161425

RESUMEN

BACKGROUND: Glioma is the most common and aggressive tumor in the adult brain. Recent studies have indicated that Zinc finger DHHC-type palmitoyltransferases (ZDHHCs) play vital roles in regulating the progression of glioma. ZDHHC15, a member of the ZDHHCs family, participates in various physiological activities in the brain. However, the biological functions and related mechanisms of ZDHHC15 in glioma remain poorly understood. METHODS: Data from multiple glioma-associated datasets were used to investigate the expression profiles and potential biological functions of ZDHHC15 in glioma. Expression of ZDHHC15 and its association with clinicopathological characteristics in glioma were validated by quantitative reverse transcription PCR (RT-qPCR) and immunohistochemical experiments. GO enrichment analysis, KEGG analysis, GSEA analysis, CCK-8, EdU, transwell, and western blotting assays were performed to confirm the functions and mechanism of ZDHHC15 in glioma. Moreover, we performed Kaplan-Meier analysis and Cox progression analysis to explore the prognostic significance of ZDHHC15 in glioma patients. RESULTS: ZDHHC15 expression was significantly up-regulated in glioma and positively associated with malignant phenotypes. Results from the GO and KEGG enrichment analysis revealed that ZDHHC15 was involved in regulating cell cycle and migration. Knockdown of ZDHHC15 inhibited glioma cell proliferation and migration, while overexpression of ZDHHC15 presented opposite effects on glioma cells. Besides, results from GSEA analysis suggested that ZDHHC15 was enriched in STAT3 signaling pathway. Knockdown or overexpression of ZDHHC15 indeed affected the activation of STAT3 signaling pathway. Additionally, we identified ZDHHC15 as an independent prognostic biomarker in glioma, and higher expression of ZDHHC15 predicted a poorer prognosis in glioma patients. CONCLUSION: Our findings suggest that ZDHHC15 promotes glioma malignancy and can serve as a novel prognostic biomarker for glioma patients. Targeting ZDHHC15 may be a promising therapeutic strategy for glioma.


Asunto(s)
Glioma , Humanos , Pronóstico , Glioma/genética , Western Blotting , Encéfalo , Biomarcadores , Proteínas de Unión al ADN
5.
Int J Biol Macromol ; 242(Pt 2): 124806, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37178879

RESUMEN

Glucose oxidase (GOx) has a great application potential in the determination of glucose concentration. However, its sensitivity to the environment and poor recyclability limited its broader application. Herein, with the assistance of DA-PEG-DA, a novel immobilized GOx based on amorphous Zn-MOFs (DA-PEG-DA/GOx@aZIF-7/PDA) was developed to impart excellent properties to the enzyme. SEM, TEM, XRD, and BET analyses confirmed that GOx was embedded in amorphous ZIF-7 with ∼5 wt% loading. Compared with free GOx, DA-PEG-DA/GOx@aZIF-7/PDA exhibited enhanced stability, excellent reusability, and promising potential for glucose detection. After 10 repetitions, the catalytic activity of DA-PEG-DA/GOx@aZIF-7/PDA can maintain 95.53 % ± 3.16 %. In understanding the in situ embedding of GOx in ZIF-7, the interaction of zinc ion and benzimidazole with GOx was studied by using molecular docking and multi-spectral methods. Results showed that zinc ions and benzimidazole had multiple binding sites on the enzyme, which induced the accelerated synthesis of ZIF-7 around the enzyme. During binding, the structure of the enzyme changes, but such changes hardly affect the activity of the enzyme. This study provides not only a preparation strategy of immobilized enzyme with high activity, high stability, and low enzyme leakage rate for glucose detection, but also a more comprehensive understanding of the formation of immobilized enzymes using the in situ embedding strategy.


Asunto(s)
Técnicas Biosensibles , Glucosa Oxidasa , Glucosa Oxidasa/química , Simulación del Acoplamiento Molecular , Enzimas Inmovilizadas/química , Zinc , Glucosa/análisis , Técnicas Biosensibles/métodos
6.
Molecules ; 28(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37049880

RESUMEN

Immobilized angiotensin-converting enzyme (ACE) is a promising material for the rapid screening of antihypertensive drugs, but the nonspecific adsorption is a serious problem in separation processes involving complex biological products. In this study, triblock copolymers with dopamine (DA) block as anchors and PEG block as the main body (DA-PEGx-DA) were attached to an immobilized ACE (ACE@mZIF-8/PDA, AmZP) surface via the "grafting to" strategy which endowed them with anti-nonspecific adsorption. The influence of DA-PEGx-DA chain length on nonspecific adsorption was confirmed. The excellent specificity and reusability of the obtained ACE@mZIF-8/PDA/DA-PEG5000-DA (AmZPP5000) was validated by screening two known ACE inhibitory peptides Val-Pro-Pro (VPP, competitive inhibitory peptides of ACE) and Gly-Met-Lys-Cys-Ala-Phe (GF-6, noncompetitive inhibitory peptides of ACE) from a mixture containing active and inactive compounds. These results demonstrate that anchored polymer loops are effective for high-recognition selectivity and AmZPP5000 is a promising compound for the efficient separation of ACE inhibitors in biological samples.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Péptidos , Péptidos/farmacología , Péptidos/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/química , Antihipertensivos/química , Peptidil-Dipeptidasa A , Angiotensinas
7.
Immunology ; 169(4): 503-514, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37054988

RESUMEN

Adult gliomas are divided into isocitrate dehydrogenase (IDH) wild-type and IDH mutant subtypes according to the new 2021 World Health Organization classification system. However, the local and systemic effects of IDH mutations on primary glioma patients are not well illustrated. Retrospective analysis, immune-cell infiltration analysis, meta-analysis, and immunohistochemistry assay were applied in the present study. The results from our cohort showed that IDH mutant gliomas own a lower proliferating rate compared to that in wild-type gliomas. Patients with mutant IDH exhibited a higher frequency of seizures in both our cohort and the cohort from the meta-analysis. Mutations in IDH result in lower levels of intra-tumour but higher levels of circulating CD4+ and CD8+ T lymphocytes. Levels of neutrophils in both intra-tumour and circulating blood were lower in IDH mutant gliomas. Moreover, IDH mutant glioma patients receiving radiotherapy in combination with chemotherapy exhibited better overall survival with respect to radiotherapy alone. Mutations in IDH alters the local and circulating immune microenvironment, and increases the sensitivity of tumour cell to chemotherapy.


Asunto(s)
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Isocitrato Deshidrogenasa/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Estudios Retrospectivos , Glioma/genética , Glioma/patología , Mutación , Microambiente Tumoral/genética
8.
J Mol Neurosci ; 73(2-3): 104-116, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36653624

RESUMEN

Tumor-remodeled endothelial cells not only facilitate the formation of tumor angiogenesis but also promote tumorigenesis. In this study, we aimed to explore the interaction between glioma-associated endothelial cells (GAEs) and glioma cells. We found that different subtypes of glioma owned distinct GAE abundance. Glioma patients with high GAE abundance exhibited poor prognosis. Both the results of the bioinformatics analysis and the in vitro co-culture system assay revealed that GAE promoted glioma cell invasion. Besides, anti-vascular endothelial growth factor (VEGF) therapy partially abolished the effects of GAE on gliomas. Moreover, anti-VEGF therapy upregulated IL-2 expression in GAE, and exogenous IL-2 administration inhibits GAE-induced glioma cell invasion. Collectively, our present study provides a novel outstanding of the interaction between GAE and glioma cells.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Factores de Crecimiento Endotelial/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Células Endoteliales/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Interleucina-2/farmacología , Glioma/tratamiento farmacológico , Glioma/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Línea Celular Tumoral
9.
Br J Neurosurg ; 37(5): 1057-1060, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33252289

RESUMEN

PURPOSE: Cranioplasty (CP) after decompressive craniectomy (DC) is routinely performed for reconstructive purposes and improves rehabilitation. However, the optimal timing of CP remains controversial. This study aimed to assess differences in clinical outcomes following different timings of CP in patients with traumatic brain injury. MATERIALS AND METHODS: Patients with traumatic brain injury who underwent CP after DC in Zhongnan Hospital of Wuhan University from 1 January 2010 to 1 May 2017, and in Affiliated Hospital of Guizhou Medical University from 1 January 2015, to 1 May 2017, were retrospectively reviewed. According to the timing of CP, patients were divided into an 'early group' (3-6 months) and a 'late group' (6-12 months). The clinical characteristics of patients and postoperative complications occurred within 1-year follow-up were analysed. The neurological function was assessed with Barthel Index (BI). RESULTS: A total of 100 patients (58 cases in early group and 42 cases in late group) were included. The median interval between DC and CP was 135 days and 225 days in the early and late CP groups, respectively. The overall complication rate after CP was 16%, and no significant difference in complication rate was observed between the early and late CP groups (17.2% vs.14.3%, p = 0.69). The neurological function was improved in early CP group (pre-CP 85.77 ± 11.61 vs. post-CP 95.34 ± 9.02, p < 0.001, but not in late CP group (pre-CP 82.74 ± 22.82 vs. post-CP 88.93 ± 22.86, p = 0.22). In addition, a significantly higher proportion of patients in the early CP group showed neurological functional improvement in comparison with the late CP group (early vs. late: 74.1% vs. 57.1%, p = 0.04). Multivariate analysis further demonstrated that the timing of CP is an independent predictor for neurological outcomes (OR = 0.32, 95% CI 0.13-0.82, p = 0.02). CONCLUSION: Early CP (3-6 months) following posttraumatic DC was associated with better neurological outcomes than late CP (>6 months).


Asunto(s)
Lesiones Traumáticas del Encéfalo , Craniectomía Descompresiva , Humanos , Estudios Retrospectivos , Craniectomía Descompresiva/efectos adversos , Cráneo/cirugía , Complicaciones Posoperatorias/etiología , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/cirugía
10.
J Clin Med ; 11(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36556130

RESUMEN

Inflammation is related to cancer. The systemic immune-inflammation index (SII) has been linked to the prognosis of many types of cancer. The present study aimed to determine the prognostic value of the SII in glioblastoma (GBM) patients based on meta-analysis and single-center retrospective analysis. Relevant publications published before 1 October 2022 were identified by searching PubMed, EMBASE, Cochrane Library databases, and Web of Science. Moreover, 208 GBM patients from Zhongnan Hospital were incorporated. Kaplan−Meier and Cox regression analyses determined the prognostic significance of inflammatory markers. By combining these indicators, we developed scoring systems. Nomograms were also built by incorporating independent variables. The accuracies of nomograms were evaluated by Harrell's concordance index (c-index) and the calibration curve. According to meta-analysis, an elevated SII predicted the worst overall survival (OS) (Hazard ratio [HR] = 1.87, p < 0.001). Furthermore, a higher SII (>510.8) (HR = 1.782, p = 0.007) also predicted a poorer outcome in a retrospective cohort. The scoring systems of SII-NLR (neutrophil-to-lymphocyte ratio) showed the best predictive power for OS. The nomogram without MGMT (c-index = 0.843) exhibited a similar accuracy to that with MGMT (c-index = 0.848). A pre-treatment SII is independently associated with OS in GBM. A nomogram integrating the SII-NLR score may facilitate a comprehensive survival evaluation independent of molecular tests in GBM.

11.
Chin Clin Oncol ; 11(4): 29, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36098100

RESUMEN

BACKGROUND AND OBJECTIVE: Glioma is the most common intracranial primary malignant tumor, and half of it is glioblastoma. Despite receiving the standard treatment, the prognosis of glioblastoma is still poor and its 5-year survival rate in China is only 9%. In addition, new targeted and immunotherapy therapy and tumor treating fields also have certain curative effects on glioblastoma. To help clinicians and patients make appropriate treatment based on current evidences, we summarize the Chinese guidelines on the management of glioma and review the recent management of glioblastoma. METHODS: We systematically searched PubMed, China National Knowledge Infrastructure (CNKI) and Wanfang databases to retrieve guidelines on glioma in China published from the establishment of the database to 24 January 2022. We performed a narrative review of current clinical study related to the management of glioblastoma, especially in the surgical, targeted and immunotherapy therapy and tumor treating fields. KEY CONTENT AND FINDINGS: In this review, 19 guidelines were included, including 8 subclassified as the guideline, 8 subclassified as the consensus and 3 subclassified as the standard. Two guidelines reported the contents of the system search, 4 guidelines are updated, and 9 guidelines reported the source of funding. At present, most clinical trials on the immune and targeted therapy of glioblastoma are ongoing in China. CONCLUSIONS: China's guidelines still need to be improved in terms of preciseness, applicability and editorial independence. In addition, the cooperation in clinical research of glioblastoma in multiple centers needs to be strengthened in China.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Neoplasias Encefálicas/terapia , China , Bases de Datos Factuales , Glioblastoma/terapia , Humanos
12.
Mol Biol Rep ; 49(11): 10949-10959, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36044113

RESUMEN

Malignant tumor cells can obtain proliferative benefits from deviant metabolic networks. Emerging evidence suggests that lipid metabolism are dramatically altered in gliomas and excessive fatty acd accumulation is detrimentally correlated with the prognosis of glioma patients. Glioma cells possess remarkably high levels of free fatty acids, which, in turn, enhance post-translational modifications (e.g. palmitoylation). Our and other groups found that palmitoylational modification is essential for remaining intracellular homeostasis and cell survival. Disrupting the balance between palmitoylation and depalmitoylation affects glioma cell viability, apoptosis, invasion, self-renew and pyroptosis. In this review, we focused on summarizing roles and relevant mechanisms of protein palmitoylational modification in gliomas.


Asunto(s)
Glioma , Lipoilación , Humanos , Glioma/metabolismo , Procesamiento Proteico-Postraduccional , Apoptosis
13.
Int J Radiat Oncol Biol Phys ; 114(1): 173, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35798657
14.
Mol Ther Nucleic Acids ; 28: 716-731, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35664705

RESUMEN

High immune-cell infiltration in glioblastomas (GBMs) leads to immunotherapy resistance. Emerging evidence has shown that zinc finger Asp-His-His-Cyc-type (ZDHHC) palmitoyl transferases participate in regulating tumor progression and the immune microenvironment. In the present study, a large cohort of patients with gliomas from The Cancer Genome Atlas (TCGA) and Rembrandt databases was included to perform omics analysis of ZDHHCs in gliomas. CCK-8, flow cytometry, quantitative real-time PCR, western blotting, and transwell assays were performed to determine the effects of ZDHHC inhibition on glioma cells and microglia. We found that five (ZDHHC11, ZDHHC12, ZDHHC15, ZDHHC22, and ZDHHC23) out of 23 ZDHHCs were aberrantly expressed in gliomas and might play their roles through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway. Further results indicated that inhibition of ZDHHCs with 2-bromopalmitate (2-BP) suppressed glioma-cell viability and autophagy, as well as promoted apoptosis. Targeting ZDHHCs also promoted the sensitivity of glioma cells to temozolomide (TMZ) chemotherapy. In addition, the inhibition of ZDHHCs weakened the migratory ability of microglia induced by glioma cells in vitro and in vivo. Taken together, our findings suggest that the inhibition of ZDHHCs suppresses glioma-cell viability and microglial infiltration. Targeting ZDHHCs may be promising for glioma treatments.

15.
Front Oncol ; 12: 716295, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35719947

RESUMEN

Inflammation is a hallmark of cancers. The purpose of the present study was to evaluate the prognostic potential of hematological inflammatory markers in glioblastoma multiforme (GBM) patients. The clinical data of 99 patients with lower-grade gliomas and 88 patients with GBMs were retrospectively analyzed. The optimal cutoff values for peripheral markers were determined by X-tile. Kaplan-Meier and Cox proportional hazard regression analyses were performed to identify markers with prognostic significance. Several scoring systems were constructed by combining these prognostic markers. The predictive accuracies of nomograms incorporating these scoring systems were evaluated by Harrell's concordance index and receiver operating characteristic curve analysis. GBM patients exhibited higher neutrophil counts (p=0.001), neutrophil-to-lymphocyte ratio (NLR) (p<0.001), and platelet-to-lymphocyte ratio (PLR) (p=0.001), as well as lower lymphocyte counts (p=0.023), lymphocyte-to-monocyte ratio (LMR) (p=0.015), and albumin-to-globulin ratio (AGR) (p=0.003) than those with lower-grade gliomas. Multivariate analysis indicated that a high NLR (> 2.0) (Hazard ratio[HR]=2.519, 95% confidence interval (CI): 1.220-5.204, p=0.013), low LMR (< 2.3) (HR=2.268, 95%CI: 1.172-4.386, p=0.015), or low AGR (< 1.7) (HR=2.924, 95%CI: 1.389-6.135, p=0.005) were associated with poor overall survival in GBM patients. The scoring systems of AGR-NLR, AGR-LMR, and LMR-NLR were associated with GBM survival. The nomogram integrating AGR-NLR score had the best efficacy in predicting GBM survival (c-index=0.874). Pretreatment scores of AGR-NLR, AGR-LMR, and LMR-NLR may serve as prognostic factors for GBM patients, and a nomogram integrating AGR-NLR may provide a reliable tool to facilitate personalized preoperative evaluations.

16.
Neurosci Bull ; 38(9): 1069-1084, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35670952

RESUMEN

Isocitrate dehydrogenase (IDH) is an essential metabolic enzyme in the tricarboxylic acid cycle (TAC). The high mutation frequency of the IDH gene plays a complicated role in gliomas. In addition to affecting gliomas directly, mutations in IDH can also alter their immune microenvironment and can change immune-cell function in direct and indirect ways. IDH mutations mediate immune-cell infiltration and function by modulating immune-checkpoint gene expression and chemokine secretion. In addition, IDH mutation-derived D2-hydroxyglutarate can be absorbed by surrounding immune cells, also affecting their functioning. In this review, we summarize current knowledge about the effects of IDH mutations as well as other gene mutations on the immune microenvironment of gliomas. We also describe recent preclinical and clinical data related to IDH-mutant inhibitors for the treatment of gliomas. Finally, we discuss different types of immunotherapy and the immunotherapeutic potential of IDH mutations in gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Glioma/genética , Glioma/metabolismo , Glioma/terapia , Humanos , Inmunoterapia , Isocitrato Deshidrogenasa/genética , Mutación/genética , Microambiente Tumoral
17.
Biochem Biophys Res Commun ; 607: 28-35, 2022 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-35366540

RESUMEN

Neuronal activity is closely associated with energy metabolism. In addition to glucose, astrocyte-derived lactate serves as an energy source for neurons. Chronic inflammation is a common pathological event that is associated with aging and neurodegenerative diseases. However, the mechanisms underlying inflammation-induced neuronal injury are not fully understood. Both microglia and astrocytes participate in the regulation of neuronal functions; therefore, we used astrocyte-neuron co-cultures to investigate the effects of chronic microglial activation on neuronal lactate metabolism. Chronic low-grade inflammation was induced by repeated stimulation of primary rat microglia with low-dose lipopolysaccharide (LPS, 10 ng/mL). The medium from the LPS-activated microglia was collected and used to mimic the inflammatory environment in primary cultures. In monocultures exposed to an inflammatory environment, intracellular lactate decreased in neurons but increased in astrocytes. However, astrocyte-neuron co-cultures exhibited increased lactate levels in neurons and decreased lactate levels in astrocytes when exposed to an inflammatory environment. Inhibition of lactate transporters expressed on neurons or astrocytes reduced the intracellular lactate in co-cultured neurons exposed to inflammation, but not in those exposed to physiological conditions. Adenosine triphosphate (ATP) production was reduced in both mono-cultured and co-cultured neurons. These results indicate that a chronic inflammatory environment increases neuronal lactate supply by promoting the astrocyte-neuron lactate shuttle, but it impairs lactate oxidation in neurons. Additionally, chronic inflammation disrupts the neuronal cytoskeleton. This study highlights the importance of glial cells in regulating neuroenergetics and neuronal function and provides a comprehensive explanation for the neurotoxic effects of neuroinflammation.


Asunto(s)
Astrocitos , Microglía , Animales , Astrocitos/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Inflamación/inducido químicamente , Inflamación/metabolismo , Ácido Láctico/metabolismo , Lipopolisacáridos/farmacología , Microglía/metabolismo , Neuronas/metabolismo , Ratas
18.
Environ Sci Pollut Res Int ; 29(30): 46161-46173, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35157204

RESUMEN

Two novel adsorbents of CaAl-LDHs and sodium dodecyl benzene sulfonate (SDBS) intercalated CaAl-LDHs (SDBS-CaAl-LDHs) were successfully prepared by co-precipitation. The main composition and physical properties of two samples were characterized by XRD, XPS, FT-IR, TG, and SEM. Batch adsorption experiments were conducted to study the effect of pH, adsorption time, and initial concentration of Pb2+. The results showed that the prime adsorption conditions obtained were pH of 5.2 after 60 min with the initial concentration of 300 mg g-1 for CaAl-LDHs and 350 mg g-1 for SDBS-CaAl-LDHs. At 303 K, the adsorption capacities and removal rates of CaAl-LDHs and SDBS-CaAl-LDHs were found to be 456.05 mg g-1, 91.21% and 682.26 mg g-1, 97.47%, respectively. For CaAl-LDHs, the kinetic data for Pb2+ was best fitted with pseudo-2nd-order model, and the adsorption isotherms followed Langmuir and Freundlich isotherm model. The adsorption data of SDBS-CaAl-LDHs can be best described by the pseudo-second-order kinetic and Langmuir model. The Pb2+ adsorption mechanism on SDBS-CaAl-LDHs was explored by XRD, XPS, and SEM, and the important roles of the electrostatic attraction, precipitation, complexation, and ion exchange were demonstrated. The Langmuir adsorption capacities for SDBS-CaAl-LDHs were 797.63, 828.76, and 854.29 mg g-1 at 293 k, 303 k, and 313 k, respectively. Thus, SDBS-CaAl-LDHs may be a highly economical adsorbent for the treatment of contaminated water.


Asunto(s)
Aluminio , Contaminantes Químicos del Agua , Adsorción , Aluminio/química , Hidróxido de Aluminio , Bencenosulfonatos , Calcio , Cinética , Plomo , Hidróxido de Magnesio , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/análisis
19.
Int J Biol Macromol ; 204: 193-203, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35090938

RESUMEN

The interaction between angiotensin I-converting enzyme (ACE) and the inhibitory peptide KNFL from Wakame was explored using isothermal titration calorimetry, multiple spectroscopic techniques and molecular dynamics simulations, and an inhibition model was established based on free energy binding theory. The experiments revealed that the binding of KNFL to ACE was a spontaneous exothermic process driven by enthalpy and entropy and occurred via multiple binding sites to form stable complexes. The complexes may be formed through multiple steps of inducing fit and conformational selection. The peptide KNFL had a fluorescence quenching effect on ACE and its addition not only affected the microenvironment around the ACE Trp and Tyr residues, but also increased the diameter and altered the conformation of ACE. This study should prove useful for improving our understanding of the mechanism of ACE inhibitory peptides.


Asunto(s)
Peptidil-Dipeptidasa A , Undaria , Inhibidores de la Enzima Convertidora de Angiotensina/química , Cinética , Simulación del Acoplamiento Molecular , Péptidos/química , Peptidil-Dipeptidasa A/metabolismo , Undaria/metabolismo
20.
CNS Neurosci Ther ; 27(12): 1483-1492, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34605602

RESUMEN

AIMS: Secondary gliosarcoma (SGS) rarely arises post treatment of primary glioblastoma multiforme (GBM), and contains gliomatous and sarcomatous components. The origin and clonal evolution of SGS sarcomatous components remain uncharacterized. Therapeutic radiation is mutagenic and can induce sarcomas in patients with other tumor phenotypes, but possible causal relationships between radiotherapy and induction of SGS sarcomatous components remain unexplored. Herein, we investigated the clonal origin of SGS in a patient with primary GBM progressing into SGS post-radiochemotherapy. METHODS: Somatic mutation profile in GBM and SGS was examined using whole-genome sequencing and deep-whole-exome sequencing. Mutation signatures were characterized to investigate relationships between radiochemotherapy and SGS pathogenesis. RESULTS: A mutation cluster containing two founding mutations in tumor-suppressor genes NF1 (variant allele frequency [VAF]: 50.0% in GBM and 51.1% in SGS) and TP53 (VAF: 26.7% in GBM and 50.8% in SGS) was shared in GBM and SGS. SGS exhibited an overpresented C>A (G>T) transversion (oxidative DNA damage signature) but no signature 11 mutations (alkylating-agents - exposure signature). Since radiation induces DNA lesions by generating reactive oxygen species, the mutations observed in this case of SGS were likely the result of radiotherapy rather than chemotherapy. CONCLUSIONS: Secondary gliosarcoma components likely have a monoclonal origin, and the clone possessing mutations in NF1 and TP53 was likely the founding clone in this case of SGS.


Asunto(s)
Neoplasias Encefálicas , Evolución Clonal/genética , Glioblastoma , Gliosarcoma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Femenino , Glioblastoma/genética , Glioblastoma/patología , Gliosarcoma/genética , Gliosarcoma/secundario , Humanos , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...